

Technical and Economic Feasibility of Remote Area Hydrocarbon Exploitation Using a Clean Energy Producing Vessel

by

Dr Richard Bucknall

The LRET Research Collegium Southampton, 11 July – 2 September 2011

[±]UCL

'On the Technical and Economic Feasibility of Remote Area Hydrocarbon Exploitation Using a Clean Energy Producing Vessel'

Richard Bucknall

Marine Research Group Department of Mechanical Engineering University College London r_bucknall@meng.ucl.ac.uk

Lecture Format

- Energy and Emissions
- The CEPV Concept
 - Prime-mover Options
 - Gas Flows and Separation
 - Electrical Power Transmission Schemes
 - CO₂ Capture and Sequestration
 - Economic Analysis
 - Case Studies
- Conclusions

ENERGY AND EMISSIONS

Energy and Greenhouse Gases

[±]UCL

Worldwide Energy Supply Today

- Hydrocarbons (oil, gas and coal) supply 87% of our energy needs.
- Nuclear Fission supplies only 6% of our energy needs.
 - Renewables supply only 7% of our energy needs and is predominantly large scale hydro-electric schemes.

Today the world uses nearly twice as much energy as it did 30 years ago!

<u><u>+</u>UCL</u>

World CO2 Emissions Today

The worst polluters are:

- Electricity (0.45 kg/kWh) (mixed primary energy)
- Coal(0.35 kg/kWh) (industry and heating)
- Oil (0.27 kg/kWh) (industry and transport)
- Gas (0.22 kg/kWh) (industry and heating)

Electricity – A Worldwide Perspective

- Major contributor to Greenhouse Gas Emissions
- Rapidly increasing demand
 - Mainly met by new fossil thermal power stations!!!

Source: IEA

Electricity – A UK Perspective

- Major contributor to Greenhouse Gas Emissions
- Security of Energy Supply
- Future Generation Gap (old power stations)

Туре	No. of Stations	No. of Stations Over 30 Years Old	%
Gas	19	14	73.7
Coal	16	13	81.3
Nuclear	12	6	50
Wind	66	0	0
Hydro	73	61	83.6
CCGT	35	0	0
Oil	3	1	33.3
CHP	5	0	0
Other	24	12	50
Total	253	107	42.3

[±]UCL

Summary

- There is an ever increasing demand for energy worldwide.
- Electricity consumption accounts for a growing proportion of total energy demand
- Electricity is predominantly generated using hydrocarbon fuels using large (GW) power stations
- CO₂ emissions from electricity are a cause of global warming

THE CEPV CONCEPT

Assumptions

- Gas is the preferred fossil fuel as it produces less emissions than coal and oil. Renewables and nuclear are small and likely to remain so.
- UK has its own natural gas resources but is increasingly is dependent on imports.
- Majority of UK gas is offshore.
- These also apply to other nations.

⁻UCL

UK Gas Fields

Southern North Sea gas field distribution showing how gas is not in a single large field but is found in many small pockets each requiring its own 'tap and pipe'.

World Energy Resources

Significant amounts of natural gas is simply uneconomic to recover using pipeline!

The CEPV Concept

Onshore and Offshore Power Generation

Onshore

- Gas is supplied
- Gas supply is 'clean' gas
- Gas is at 'market price'
- Conventional power plant
- Housed in a building
- Connection direct to NG
- Fixed location
- CCS requires long pipeline
- Known technical solution
- Known capital and running costs

Offshore

- Gas must be drilled
- Gas supply is 'raw' gas
- Gas is abandoned i.e. 'free'

AUCI

- 'Marinised' power plant
- Housed in a vessel or rig
- Connection is via subsea cable
- Location not fixed
- CCS requires shorter pipelines
- Unknown technical solution
- Unknown capital and running costs

Cost Comparison

Parameter	Shore-based Power Station	Offshore-based Power Station
Capital Cost	Land purchase	 Licence to exploit natural gas
	 Power station 	 Wellhead cost and riser
	 Connection to gas supply 	 Vessel
	 Connection to National Grid 	 Gas processing plant
	 Service requirements 	 Power generating plant
		 Subsea transmission cable
		 Connection to National Grid
Running Cost	 Gas consumption 	 National Grid cost
	 Cooling water charges 	 Maintenance cost
	 CO₂ emissions tax 	 Manning cost
	 National Grid connection cost 	 Taxes
	 Maintenance cost 	
	 Manning cost 	
	Taxes	

Key parts of a 'Base Case' CEPV

- Power Generation
 - Prime-movers
 - Electrical generation and distribution
 - Electrical power transmission
- Gas Side
 - Well head and riser system
 - Onboard gas processing plant
 - CO₂ Capture, compressing and storage (optional)
- Platform
 - Vessel
 - Ship services
 - Propulsion (optional)

Prime-movers

Prime-mover Selection Criteria

PRIME-MOVER TYPE	ADVANTAGES	DISADVANTAGES
DIESEL	Large range of powers Cheap £/kW Good efficiency 'Marinised' engines available	Limited versions use NG High maintenance
GAS TURBINES	Good power to weight ratio High powers available Some 'marinised' engines	Low efficiency Discrete size engines Expensive £/kW
STEAM TURBINES	Low maintenance High powers available Robust and 'marinised' plant	Heavy plant (requires boilers and condensers) Low efficiency
FUEL CELLS	Excellent efficiency Low maintenance Modular construction	Limited versions available Very expensive £/kW Almost no use offshore

[•]UCL

Combined Cycle Gas Turbine Plant.

[±]UCL

Power Plant Selected for Base Case CEPV -Combined Cycle Gas Turbine (CCGT)

Specification

A 264 MW_e Rolls Royce Trent plant which consists of 4 x 51.9 MW_e gas turbine generator and 2 x 28.2 MW_e steam turbine generator operating using the waste heat generator.

Maximum Gas In-Flow Calculations

- Intake air: 12.32 million m³ per day
- **Gas consumption:** 1.24 million m³ per day

Maximum Gas Out-Flow Calculations

Minimum Capacity for Base Case CEPV:

- Exhaust: 33.7 million m³ per day
- CO₂: 1.31 million m³ per day

<u><u>+</u>UCL</u>

CEPV – Natural Gas Flows

- 1. A natural gas flexible riser system 'up-pipe' allows 'raw' natural gas to be transferred from the wellhead to the CEPV.
- 2. Gas processing system 'cleans' the 'raw' natural gas prior to combustion by the CCGT power plant.
- 3. Condensates collected during gas processing are stored for later transfer to a shuttle tanker.

'Raw Natural Gas'

Constituent	% Volume	Constituent	% Volume
Methane	93.00	Hexane	0.05
Ethane	3.00	Heptane	0.03
Propane	0.67	Octane	0.01
Isobutane	0.27	Nitrogen	2.12
Isopentane	0.08	CO ₂	0.34
H_2S	0.43	Condensate	0.05

Typical Constituents in North Sea Natural Gas

Process flow of gas to exhaust to exhaust and electrical power generation.

DCL

Gas Processing Plant - Wellhead to CCGT Plant

Transmission

• Electrical power conditioning prepares the generated electrical power for subsea transmission.

• A subsea electrical transmission system connects the CEPV to the shore-side electrical grid.

Proposed Bipolar HVDC System

Typical HVDC ICR Subsea Cable

			INSUL INSUL LEAD ALLO PLASTIC SHEAT FIBEL OPTIC CABLE REINFORCEMENT AND T TORATED RETURN CONDUCTOR	CONDUCTOR SCREEN CONDUCTOR SCREEN ISULATION, IMPREGNATED ATION SCREEN Y SHEATH IN UNIT MODING TAPE	MII MAPER LAMES			
Operation mode	Cable type	Voltage (kV)	Conductor material	Conductor CSA (mm ²)	Cost (£/m)	Losses (MW/km)	Converter cost (£)	Additional losses (%)
HVDC	ICR	200	aluminium	1000	142	0.051	50 M	5*

Cable Costs

CEPV Electrical Power System

Equipment	Specifications	Manufacturer		
Generators	 6 x AC Synchronous Brushless Generators operating at 50 Hz and 25 kV: 4 x 61.1 MVA 2 x 33.2 MVA <i>Volume : 2,506 m</i>³ 	GT Generators are supplied as part of Rolls Royce Trent package. ST Generators are supplied as part of Alstom steam turbines generator package.		
Transformers	1 x Step-up Transformer on CEPV <i>Volume : 630 m</i> ³	Siemens Power Transmission and Distribution		
Converters	VSC Converter/Inverter Volume : 13,000 m ³	ABB HVDC Light		
Cable type	HVDC: 200 kV ICR Cable	ICR: Nexans Cables		
Generator Circuit Breakers	Water-cooled, continuous current ratings up to 8,000 A <i>Volume : 80 m</i> ³	Hitachi GMCB SF6		

CLEAN ENERGY PRODUCING VESSEL DEEP DISPLACEMENT 67,037 TONNES LIGHT SHIP DISPLACEMENT 62,026 TONNES LENGTH (BP) LENGTH (OA) 179 M 185 M BEAM (WL) DEPTH OF HULL 34 M 19 M C_P C_M 0.98 0.86 COMPLEMENT 20 STORES **30 DAYS MAXIMUM** HULL TYPE NORTH SEA **MONO-HULL OPERATIONAL AREA** PAYLOAD **CO₂ SEQUESTRATION PLANT** GAS PROCESSING PLANT **GAS TURBINE AND STEAM TURBINE GENERATORS** SUBMERGED TURRET PRODUCTION SYSTEM MACHINERY GAS PROCESSING PLANT OTHER **3-PHASE SEPARATOR** 4X ROLLS ROYCE TRENT GAS 1X SIEMENS POWER TRANSFORMER 1X APL SUBMERGED TURRET TURBINES AND GENERATOR **PRODUCTION UNIT** Amine gas sweetener 1x Siemens switchgear Glycol dehydration unit 1x condensate offloading facility 2x Alstom WHRU steam turbine and 1x Hitachi GMCB sf6 circuit breaker generator Gas compressor 1x ABB HVDC Light converter station

	4x Wartsila diesel generators						
TANKAGE							
CONDENSATE	1,000 M ³	SLUDGE AND WASTE OILS	250 M ³				
FRESH WATER	400 M ³	NATURAL GAS BUFFER	900 M ³				

CEPV – Outline Design Study

PROFILE

⁻UCL

Specification of the Base Case CEPV

Equipment	Specifications/Requirements	Comments
CCGT electricity	CCGT Plant for Base CEPV: A 264 MWe	- Intake air: 12.32 million m ³
generating plant	Rolls Royce Trent plant which consists of 4 x	per day.
	51.9 MW_e gas turbine generator and 2 x	- Fuel consumption: 1.24
	28.2 MW _e steam turbine generator.	million m ³ per day.
	<u>Volume: 11,713 m³</u>	- Exhaust Generated: 33.7
		million m ³ per day.
Gas Processing	Gas processing plant to consist of a three	- Minimum gas flow for Base
Plant	phase separator, condensate offloading	Case CEPV: 41 mmscfd.
	facility, amine sweetener, glycol dehydration	- Natural gas required: 1.24
	plant, natural gas buffer and emergency	million m ³ per day.
	$\frac{11}{2}$	- Condensate production:
	<u>volume: 13,500 m³</u>	6.37 m ³ per day.
CO. Conture and	Dest combustion conture with goals sized	<u>1X MAN Turbo Compressor</u>
CO_2 Capture and	Post-combustion capture with geological	Cose CEDV:
Sequestiation	sequestration into depleted on and gas field.	Case CEPV.
		ss.7 million me exhaust gas
		1 313 million m^3 CO per
		1.313 minior m ² CO_2 per
Turret	Turret to accommodate: natural das up-pipe	Natural das: 41 mmscfd
	CO_{\circ} down-pipe and cable riser	CO_{\circ} 1 313 million m ³ per day
		250 MWe generated
		electricity

[•]UCL

CO₂ Capture and Sequestration

- CCS is a technology under development.
- Different solutions for capture are being researched
- Different solutions for storage are being researched

Carbon Capture and Storage Schemes

Project name	Country	Injection start (year)	Approximate average daily injection rate (tCO ₂ day-1)	Total (planned) storage (tCO ₂)	Storage reservoir type
Weyburn	Canada	2000	3,000-5,000	20,000,000	EOR
In Salah	Algeria	2004	3,000-4,000	17,000,000	Gas field
Sleipner	Norway	1996	3,000	20,000,000	Saline formation
K12B	Netherlands	2004	100 (1,000 planned for 2006+)	8,000,000	Enhanced gas recovery
Frio	U.S.A	2004	177	1600	Saline formation
Fenn Big Valley	Canada	1998	50	200	ECBM
Qinshui Basin	China	2003	30	150	ECBM
Yubari	Japan	2004	10	200	ECBM
Recopol	Poland	2003	1	10	ECBM
Gorgon (planned)	Australia	~2009	10,000	unknown	Saline formation
Snøhvit (planned)	Norway	2006	2,000	unknown	Saline formation

Examples of some current Carbon Capture and Storage Technologies.

CO₂ Separation

- Separate CO2 from exhaust (Capture process)
- Capture processes
 - Calcium cycle capture
 - Cryogenic capture
 - Amine capture
- CEPV selected ABB-Lummus System
 - 6,290 m³ of CO₂ per hour on a single stream

Transportation of CO₂

- The transportation of CO₂ by ships is already being done but only on a small scale. Larger ships would be required for the sequestration of CO₂
- The CO2 is generally transported as a pressurised cryogenic liquid e.g. at 6 bar and at a temperature of -55 deg. C energy intensive process.
- The CEPV avoids the need to transport CO₂. CO₂ would simply be transported in short pipelines to a CO₂ wellhead.

CO₂ Sequestration

- Existing technology already in use for CO₂ enhanced oil recovery. CO₂ is easily handled and is large inert, it can be transported at high pressures through pipelines.
- There is extensive pipelines carrying C0₂ in existence some of which are offshore.
- There are internationally recognised standards for the design, construction and monitoring of pipelines carrying CO₂ offshore and onshore.

[•]UCL

CEPV Economic Model

Input Page:

- Financial information
- Plant Technical Data
- Field Information Data
- Transmission Data

Output Page:

- CAPEX, OPEX
- IRR, PP, NPV

[±]UCL

Input Page

e to	at Yew Insert Format Icols Data Wind	ow Reib							Type a que	abon for belp	
14	BBBBBBBBBBB	10.00.19	E . 21 %	1 📖 -15 🖬	🖉 🛔 Arial 🔺 10 🔹	BIU	1 新 新 通 3	1 5 % .	*4 48 1 FF	(律)田・(Öt -
1.41	12 5 20 1 55 20 1 3 8 40 1 Witteriow	th Charles (Ind)	Caralment of Maria								
21											
Δ.	8	0	0	E	F	6	H	1	11 (A 1	K.	-
~	0	U. I.	0			0			9	- FS -	-
											-
	CASENAME	BASE CASE									
	STOR INGE	BASE CASE								-	1
		Contract of the second							10.710		-
	FINANCIAL DATA				FIELD DATA	1st	2nd	3rd	4th	5th	-
			Base		0.1040.07.07.07.0						_
	Inflation Rate %	2	2	1	Distance to shore (km)	150	160	150	60	60	1.00
	Interest Rate %	5			Base	150	150	150	60	60	1
	Gearing (MAX 100%)	25	25		Field size (bn m*3)	8	0	0	0	0	
	Corporation Tax %	30	30			8	0	0	0	0	
	Carbon Tax \$/tonne CO2	0			Wells (production)	2	0	0	0	0	
	Length of project (yrs, MAX 25)	25	25								
	Electricity Av. Revenue £/MWh	38	38		Relocation time (yrs)	0.5	0.5	0	0		
	Condensate Sale Price (\$/bbl)	90	90			0.5	0.5	0.5	0.5		
	Exchange Rate £1=	\$1.50	\$1.50		Gas price (E/MMSCF)	0	0	0	0	0	
	Discount Rate (for NPV output)	5	5		Survey and the second second	0	0	0	0	0	11
				1	Gas quality MJ/m*3	38	38	38	38	38	1.00
						38	36	38	38	38	
	PLANT DATA				Condensate ratio bbl/mmscf	40	40	40	40	40	1.0
						40	40	40	40	40	1
	VESSEL + GEN SET				Wells (exploration, abandoned)	1		0	0	0	-
	SYSTEM OPTION (see Gen Set Options)	5			CONTRACTOR AND	1	1	0	0	0	1
	DP installed 1/0	1			Water depth (m)	90	90	0	0	0	
	DP used 1/0	1			and a second s	90	90	40	40	40	<u>.</u>
	Maintenance:- days planned/yr	6	6				-				
	days unplanned/yr	6	6				_				41-
	Gas Processing (% gen. Power)	5	2								4
	CO2 Sequestration 1/0	0	0				-				4
	Ship time to refit (yrs)	15	15								4
											4
	TRANSPORTION DATA			-	P		-				4-
	TRANSMISSION DATA			_	DC OPTIONS						
	Crid Connection	00	00		Single core sea return 1		-				+
	Gild Connection 1/U				ICD 2	3	- a -				
	AC ODDONO				IGH 3						
	AC OPTIONS			-	Mallana 200 250 200 250 400 MM	2000	2000				+
	Cable Exercation Estimatel	trafail	tenfol	-	Conductor Material cuial	200					+
	Cable Formation national	LIVIUI	trendu	-	Insulation Material paper//I DE	and and a	- manage				+
					modiation material paperious c	paper	property.				-
										_	
				T							-
											1
											-
											-
											1
									-		-

⁻UCL

Output Page

	1	1				1
				Gas-to-W	ire	
CAPEX						
	Vessel					
	Basic V	'essel		66.3	(all £M)	
	Genera	tor Set		153.7		
	Seques	tration Plant	t	0.0		
	Electric	al Equipmer	nt	44.2		
	Platform					
	Structu	re		-		
	Process	sing Plant		-		
	Wells and	Subsea Inst	allation	56.1		
	Risers (Dy	namic)		2.8		
	Transmiss	ion Cables		57.5		
	Pipeline			-		
	Onshore E	lectrical Equ	uipment	44.2		
	Connection	าร		0.1		
	Miscellane	ous		0.0		
	Relocation	s		0.0		
	Decommis	sioning		12.7		
-			Total	437.4	£M	
OPEX		First year		17.3	£M	
			Total	258.4	£M	
REVENUE	Revenue p	er year (max	K.)	98.5	£M	
	· ·	Gross	Revenue	1477.2	£M	
 IRR	1	Post Tax		13.97	%	
		Pre Tax		19.42	%	
	1					
NPV	1	NPV at 5%		241.1	£M	
	1					
	1					
PAYBACK	1	Payback Pe	eriod	6.6	years	
	1	, í				
						1
	1					1

[±]UCL

Results: Impact of Electricity Sales Price

- CEPV demonstrates satisfactory payback and IRR provided electricity price is about £60/MWhr
- An upward trend of electricity price is desirable to ensure profitability

[•]UCL

Impact of Distance of Shore and Water Depth

- Generally, further offshore means greater depth and increased costs for cable and up and down pipes.
- However the impact on IRR and payback is modest.

- Increasing the number of wells allows increased gas flow as the gas field depletes but is more expensive.
- Increasing the number relocations (which will include down time) means reduced IRR and increased payback.

Economics of CO₂ Sequestration

Parameter	Without CO ₂ Sequestration	With CO ₂ Sequestration
IRR (%)	19.42 (13.97)	6.27 (3.28)
PP (Years)	6.6	11.7
NPV (£M)	241.1	-57.3
CAPEX (£M)	437.4	595.3
First Year OPEX (£M)	258.4	327.7

- The impact of using CO₂ Sequestration was found to be detrimental to the economic viability of the Base Case CEPV without CO₂ CCS.
- Further studies looked at the level of subsidy required and/or Carbon Tax to make the CEPV with CO₂ Sequestration economic.

Power Plant and Generator Set Options

Gen Set	Output (MWe)	η (%)	Total NG req. per day (tonne)	Minimum gas flow to achieve maximum production (mmscf/d)	Total NG prod. per day (tonne)	Volume of NG prod. per day (million m ³)	O ₂ req. per day (tonne)	Volume of intake air req. per day (million m ³)	CO ₂ prod. per day (tonne)	Volume of CO ₂ prod. per day (million m ³)
1	258	37	1244	64	1256	1.76	4990	17.52	3481	1.87
2	250.8	51	877	45	883	1.24	3508	12.32	2447	1.31
3	502	52	1722	88	1726	2.42	6861	24.09	4786	2.57
4	279	52	957	49	961	1.35	3820	13.42	2665	1.43
5	264	54	872	45	883	1.24	3508	12.32	2447	1.313
6	267	51	934	48	942	1.32	3742	13.14	2611	1.4
7	263.2	54	869	45	883	1.24	3508	12.32	2447	1.313
8	157	54	519	27	530	0.74	2105	7.39	1468	0.79
9	264	54	872	45	883	1.24	3508	12.32	2447	1.313
10	328	49	1194	61	1197	1.68	4756	16.7	3318	1.779
11	400	54	1321	68	1334	1.87	5302	18.62	3698	1.98
12	502	52	1722	88	1726	2.42	6861	24.09	4786	2.57
13	259.5	42	1102	57	1118	1.57	4444	15.61	3100	1.66
14	258	55	837	43	844	1.18	3352	11.77	2339	1.25

DCL

Case Study – Clair Field

Clair Field is West of Shetland and is mainly an oil field with natural gas.

Case Study – Bonga Field

Options	CAPEX (£M)	OPEX (£M)	NPV (£M)	IRR (%)	PP (Years)	Power Gen. (MW)	Power Exp. (MW)	Viability	Ranking
1	521	118.1	31.4	6.46	7.4	258	245.1	Y	3
2	601.3	132.8	-124.2	0.05	-	250.8	238.3		
3	934.2	210	30.7	5.79	7.6	502	476.9	Y	4
4	643	144.9	-112.5	0.57	9.7	279	265.1		
5	601.8	218.7	-158.3	-	-	264	250.8		
6	537.8	117.9	-31.7	3.51	8.4	267	253.7		
7	535.1	109.4	-79.2	1.25	9.3	263.2	250.0		
8	560.9	193	-288.6	-	-	157	149.2		
9	601.8	218.7	-158.3	-	-	264	250.8		
10	654.1	151	-5.5	4.77	7.9	328	311.6		
11	695.1	166.4	91.6	8.16	8.66	400	380.0	Y	2
12	833.3	203	127.1	8.64	6.8	502	476.9	Y	1
13	542.7	188.3	-48.4	2.74	8.7	259.5	246.5		
14	557.3	125.3	-71.5	1.76	9.1	258	245.1		

⁻UCL

Conclusions

- If the world is serious about reducing global warming through a reduction in emissions then it must either reduce its dependence on fossil fuels or learn to avoid emitting CO₂ into the atmosphere.
- Energy sources are becoming more remote much lies offshore in remote locations known as stranded gas reserves.
- The CEPV is an offshore power concept that appears technically and economically feasible for exploiting some stranded gas reserves
- The CEPV with CO₂ Sequestration requires subsidy to make it economic although technically feasible to achieve.